Perturbation Theory and Optimality Conditions for the Best Multilinear Rank Approximation of a Tensor

نویسندگان

  • Lars Eldén
  • Berkant Savas
چکیده

The problem of computing the best rank-(p, q, r) approximation of a third order tensor is considered. First the problem is reformulated as a maximization problem on a product of three Grassmann manifolds. Then expressions for the gradient and the Hessian are derived in a local coordinate system at a stationary point, and conditions for a local maximum are given. A first order perturbation analysis is performed using the Grassmann manifold framework. The analysis is illustrated in a few examples, and it is shown that the perturbation theory for the singular value decomposition is a special case of the tensor theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors

In this paper we discuss a multilinear generalization of the best rank-R approximation problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal leastsquares sense, by a tensor that has prespecified column rank value, row rank value, etc. For matrices, the solution is conceptually obtained by truncation of the singular value decomposition (SVD); however, this...

متن کامل

Multilinear Low-Rank Tensors on Graphs & Applications

We propose a new framework for the analysis of lowrank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multilinear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization...

متن کامل

Krylov-type methods for tensor computations I

Several Krylov-type procedures are introduced that generalize matrix Krylov methods for tensor computations. They are denoted minimal Krylov recursion, maximal Krylov recursion, and contracted tensor product Krylov recursion. It is proved that, for a given tensor A with multilinear rank-(p, q, r), the minimal Krylov recursion extracts the correct subspaces associated to the tensor in p+ q+r num...

متن کامل

A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor

We derive a Newton method for computing the best rank-(r1, r2, r3) approximation of a given J × K × L tensor A. The problem is formulated as an approximation problem on a product of Grassmann manifolds. Incorporating the manifold structure into Newton’s method ensures that all iterates generated by the algorithm are points on the Grassmann manifolds. We also introduce a consistent notation for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011